

Heavy Duty Unit Cooler MEDIUM TO LARGE WALK-INS

Cooler and Freezer Applications

Designed for Walk-in Coolers and Freezers in boxes less than 3,000 sq. ft.

Air Defrost 31,200 to 253,100 BTUH

Electric Defrost 33,100 to 227,400 BTUH

Hot Gas Defrost 33,100 to 227,400 BTUH

Models were designed in anticipation of the July 2020 Department of Energy Annual Walk-in Energy Factor (AWEF) regulations for evaporators for Walk-in Coolers and Freezers in boxes less than 3,000 sq. ft. See pages 13-14 for AWEF compliance ratings.

Features

ColdZone's Heavy Duty Unit Coolers are the ideal evaporator solution for medium and large walk-in coolers and freezers. Designed with efficiency, performance and service in mind, the Heavy Duty Cooler line is optimized to cover Cold Storage applications in the most effective way. The Heavy Duty units were engineered to meet the Department of Energy's new AWEF performance regulations and feature energy-efficient rail-mount Dual Speed EC Motors. All units are circuited for multiple refrigerants and feature optimized circuit patterns to maximize performance. Heavy Duty Unit Coolers have several enhanced service features including rail-mount motors, new high efficiency fan and venturi designs, enhanced surface coil tubing, easily removable fan guards and modular fan panels, face mount defrost heaters, hinged drain pans and shipping pallets designed to facilitate easy installation.

SIZES

There are a wide array of sizes to match your specific application requirements ranging from 31,200 to 253, 100 BTUH at a 10°TD. Models are available with air flow spanning a range of 5,750 to 24,000 CFM.

HOUSING

Each unit is constructed with a rust-free, heavy gauge, textured, aluminum housing which is light weight yet extremely durable. Models feature hinged drain pans to allow for convenient servicing and maintenance. Predrilled hanger holes are provided on all units for fast installation.

COIL

Seamless copper tubes are staggered and mechanically expanded into heavy gauge corrugated aluminum fins to assure maximum heat transfer. Die formed fin collars are provided for accurate fin spacing. Heavy gauge hangers are fastened directly to the tube sheet of the coil to provide high structural strength. Electric Defrost and Hot Gas Defrost Models are available in both 6 FPI and 4 FPI.

MOTORS

Standard models feature highly efficient Dual Speed Electronically Commutated (EC) motors. which are compliant with California Title 24 regulations¹.

FANS & FAN GUARDS

Powerful heavy-duty aluminum fans are individually balanced to provide vibration free operation. Standard heavy-gauge wire fan guards are UL/cUL-approved epoxy coated for corrosion resistance. Air throw for Heavy Duty Unit Coolers is 100 ft.

REFRIGERANTS

Heavy Duty Unit Coolers are optimized for multiple refrigerants including R404A, R407A, R448A, R449A and R744 DX (CO₂). Please specify system refrigerant requirements when ordering. A separate compartment is provided for all refrigerant connections which allows ample room for internal mounting of expansion valves.

ELECTRICAL

Available in 208/230V/1², 208-230V/3, 460V/1 or 460/3. A large compartment is supplied for all electrical components and is easily accessible by removing the end panel. All models are UL and cUL listed.

AIR DEFROST

Air Defrost models (CH6A) are designed for use in coolers at +35°F and warmer.

ELECTRIC DEFROST

Electric Defrost models (CH6E or CH4E) are designed for use in coolers and freezers between 35°F to -30°F. Electric Defrost 4 FPI models (CH4E) are designed for use in freezers between 32°F and -30°F. Defrost heaters are mounted on the air intake side of the unit for optimal performance and easy maintenance. A lower heater is installed inside the drain pan for fast, reliable drainage. Adjustable defrost termination, fan delay and heater safety controls are factory mounted for optimum performance of each control function.

HOT GAS DEFROST

There are two types of Hot Gas Defrost models available: 3-pipe Hot Gas models (CH*H or CH*K) and 2-pipe Hot Gas Reverse Cycle units (CH*G or CH*L). Hot Gas Defrost 6 FPI models (CH6H, CH6K, CH6G, CH6L) are designed for use in coolers and freezers between 35°F and -30°F. Hot Gas Defrost 4 FPI models (CH4H, CH4K, CH4G, CH4L) are designed for use in freezers between 32°F and -30°F. All units include adjustable defrost termination and fan delay controls which are factory mounted for optimum performance of each control function. Refer to the current ColdZoneTechnical Bulletin for piping. Reverse Cycle units can also be used for Alternating Evaporator Systems.

Optional Features

- EcoNet® Enabled Controller³ (factory-installed)
- EcoNet® Command Center (loose)
- Reverse Connections
- Thermostat Mechanical or Electric (mounted or loose)
- Thermostatic Expansion Valve (mounted or loose)
- Electronic Expansion Valve (mounted or loose)
- Liquid Line Solenoid Valve (mounted or loose)
- Insulated Drain Pan
- Painted Cabinet (White or Black)
- Stainless Steel Cabinet
- Coated Coil (Bronz-Glow, or Electrofin®)
- Heat Exchanger (loose)

NOTES

- AWEF (Annual Walk-in Energy Factor)
- 1. Single Compressor system without variable capacity.
- 2. Some limitations apply. For specific electrical offering, consult electrical data tables in this brochure.
- EcoNet Control Package includes: EEV; suction pressure transducer; suction, entering air coil temp. thermistors; thru-the-door disconnect switch; local on-board tworow backlit LCD display and push-button adjustments. (Controller replaces TXV, liquid line solenoid valve, room thermostat, defrost termination and fan delay, and time clock.)

Highlighted Features and Options

FANS AND HOUSING

- 30" heavy duty aluminum fans are balanced for vibration-free operation
- High efficiency deep draw venturi provide optimal air flow
- Hinged panels that can easily be removed
- NSF approved

COILS AND DEFROST HEATERS

- Available in 4 or 6 fins per inch (FPI)
- Electric defrost heaters are mounted on the air intake coil face to provide optimal performance and easy service access
- The drain pan heater is affixed to the drain pan and is easily accessed for service or cleaning

ECONET ENABLED UNIT COOLERS (OPTIONAL)

- Developed in conjunction with Rheem Manufacturing specifically for walk-in coolers and freezers — it builds on the reliability and efficiency of Rheem's EcoNet technology
- Saves energy in refrigeration systems through precise superheat and space temperature control, fan cycling, and controlling how often the system goes into defrost based on compressor runtime
- Eliminates unnecessary defrosts
 - Maximizes energy efficiency with less compressor runtime
 - Reduces fan speed to 50% during off cycle for energy savings
- Can be used with a condensing unit in single and multiple evaporator installations as a group
- Optional EcoNet Command Center with intuitive graphical interface controls up to 32 devices (including the Command Center) through one display, provides continuous communication between system components, and the remote mount display allows for EcoNet Enabled Unit Coolers to be programmed, monitored and troubleshot outside of the space being cooled

ELECTRICAL AND PIPING

- End panels slide out for easy service from the front or sides of the unit
- Ample room in electrical and piping compartments for easy access

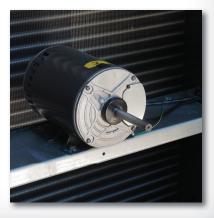
MODEL NUMBER NOMENCLATURE

CONFIGURABLE BASE MODEL

C	Н	6	E	109	D	D	A
Brand	Style	Fins Per Inch (FPI)	Defrost Type	BTUH in Thousands	Unit Voltage	Motor Type	Vintage
C = ColdZone	H = Heavy Duty Y = Reverse Connections	4 6	A = Air E = Electric H = Hot Gas 3-Pipe - Electric Drain Pan G = Hot Gas Reverse - Electric Drain Pan K = Hot Gas 3-Pipe - Hot Gas 3-Pipe - Hot Gas Drain Pan L = Hot Gas Reverse - Hot Gas Drain Pan		D = 208-230/1/60 E = 208-230/3/60 F = 460/1/60 G = 460/3/60	D = Dual Speed EC	

EVAPORATOR APPLICATION RATINGS

Multiple conditions combine to determine the application capacity of an evaporator. Walk-in space temperature, relative humidity, saturated suction temperature difference, and outdoor ambient temperature. All of the factors are considered when calculating an evaporator application rating. These ratings are higher than the net capacity value used for DOE ratings (AWEF).


The AWEF of an evaporator is calculated using the dry coil capacity and the daily evaporator power consumption. Power consumption included fan and defrost power. Evaporator net capacity reported to the DOE database is dry coil capacity less the full power fan watts. DOE test conditions are at 10°F evaporator/SST temperature difference and less than 50% relative humidity and 96°F liquid temperature. These conditions create a uniform test method, but should not be used for equipment selection. The equipment selected would be oversized for the application.

ColdZone's published application ratings are a guideline for proper equipment selection. They account for true operating conditions experienced by equipment.

FAN GUARDS EASILY REMOVABLE FOR QUICK ACCESS TO FAN BLADES AND RAIL-MOUNTED MOTORS

Application Rating and Electrical Data - Air Defrost Models - 6 FPI

	BTUH (@ 25°F			Total Fan N	lotor AMPS	
Model	10 °l	CFM	No. of	Dual Speed EC [†] Motors		
Number	R404A /	R407A/ R448A/	Or in	Fans	Motor Voltage	
	R744 DX (CO ₂)	R449A^			208-230V/1	460V/1
CH6A031*DA	31,200	36,600	5,920			
CH6A043*DA	43,600	51,100	5,870	1	6.3	3.1
CH6A052*DA	52,100	61,900	5,750			
CH6A063*DA	63,200	73,500	11,850			
CH6A087*DA	87,900	103,500	11,730	2	12.6	6.2
CH6A105*DA	105,200	124,900	11,500			
CH6A132*DA	132,500	155,800	17,600	3	10.0	0.2
CH6A156*DA	156,300	185,700	17,250	3	18.9	9.3
CH6A175*DA	175,400	206,900	23,460	4	25.2	12.4
CH6A209*DA	209,500	253,100	23,000	4	25.2	12.4

		208-2	30V/1		460V/1				
Model	M	CA	МС	PD	M	CA	МО	PD	
Number	Base Model	EcoNet Enabled ¹							
CH6A031*DA									
CH6A043*DA	15.0	15.0	20	20	15.0	15.0	20	20	
CH6A052*DA									
CH6A063*DA									
CH6A087*DA	15.0	16.2	20	20	15.0	15.0	20	20	
CH6A105*DA									
CH6A132*DA	20.5	22.5	25	25	15.0	15.0	20	20	
CH6A156*DA	20.5	22.5	25	25	15.0	15.0	20	20	
CH6A175*DA CH6A209*DA	26.8	28.8	30	30	15.0	15.0	20	20	

^{*} Each asterisk represents a variable character based on voltage ordered. See page 4 for nomenclature.

[^] R407A, R448A and R449A are rated at dew point temperature. Use R407A capacity ratings for R407C and R407F.

[†] Dual Speed EC motors are compliant with California Title 24 regulations.

^{1.} EcoNet Enabled Units are not powered by Condensing Unit so Defrost Heaters are incorporated into shown MCA/MOPD. Models were designed in anticipation of the July 2020 Department of Energy Annual Walk-in Energy Factor (AWEF) regulations for evaporators for Walk-in Coolers and Freezers in boxes less than 3,000 sq. ft. See pages 13-14 for AWEF compliance ratings.

Application Rating and Electrical Data - Electric Defrost Models

	RTIIH (Capacity			Total Fan IV	lotor AMPS
		. & 10°F TD¹				EC Motors†
Model Number			CFM	No. of Fans	Motor	/oltage
Number	R404A / R744 DX (CO ₂)	R407A/ R448A/ R449A^		Talls	208-230V/1	460V/1
6 FPI						
CH6E033*DA	33,100	38,700	5,920			
CH6E044*DA	44,500	50,900	5,870	1	6.3	3.1
CH6E053*DA	53,800	62,100	5,750			
CH6E066*DA	66,400	76,600	11,850			
CH6E089*DA	89,400	102,300	11,730	2	12.6	6.2
CH6E109*DA	109,200	125,700	11,500			
CH6E134*DA	134,500	153,800	17,600	3	18.9	9.3
CH6E163*DA	163,500	188,800	17,250	3	10.9	9.3
CH6E199*DA	199,100	227,400	23,000	4	25.2	12.4
4 FPI						
CH4E035*DA	35,800	41,100	5,870	4	0.0	0.4
CH4E044*DA	44,000	50,800	5,750	1	6.3	3.1
CH4E071*DA	71,400	83,000	11,730	2	12.6	6.2
CH4E087*DA	87,400	100,900	11,500	2	12.0	6.2
CH4E107*DA	107,700	122,900	17,600	2	10.0	0.2
CH4E131*DA	131,900	152,300	17,250	3	18.9	9.3
CH4E167*DA	167,000	190,200	23,000	4	25.2	12.4

		208-2	30V/3			Heater Amps		
Model	MCA		MC	MOPD		208-230V/3		
Number	Base Model	EcoNet Enabled ²	Base Model	EcoNet Enabled ²	No. of Circuits	Amps Each Circuit	Total Heater Amps	Heater Watts
6 FPI			1	^	1			Ī
CH6E033EDA CH6E044EDA CH6E053EDA	15.0	16.4	20	20	1	14.4	14.4	6,000
CH6E066EDA CH6E089EDA CH6E109EDA	15.0	30.9	20	35	1	28.9	28.9	12,000
CH6E134EDA CH6E163EDA	20.5	45.3	25	50	1	43.3	43.3	18,000
CH6E199EDA	26.8	59.7	30	60	2	28.9	57.7	24,000
4 FPI		,				,		
CH4E035EDA CH4E044EDA	15.0	16.4	20	20	1	14.4	14.4	6,000
CH4E071EDA CH4E087EDA	15.0	30.9	20	35	1	28.9	28.9	12,000
CH4E107EDA CH4E131EDA	20.5	45.3	25	50	1	43.3	43.3	18,000
CH4E167EDA	26.8	59.7	30	60	2	28.9	57.7	24,000

See notes on page 7.

Application Rating and Electrical Data - Electric Defrost Models continued

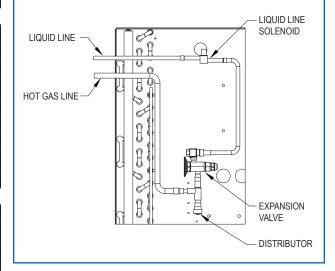
		460	V/3			Heater Amps		
Model	MCA		MC	MOPD		460V/3		
Number	Base Model	EcoNet Enabled ²	Base Model	EcoNet Enabled ²	No. of Circuits	Amps Each Circuit	Total Heater Amps	Heater Watts
6 FPI								
CH6E033GDA CH6E044GDA CH6E053GDA	15.0	15.0	20	20	1	7.5	7.5	6,000
CH6E066GDA CH6E089GDA CH6E109GDA	15.0	16.1	20	20	1	15.1	15.1	12,000
CH6E134GDA CH6E163GDA	15.0	23.6	20	25	1	22.6	22.6	18,000
CH6E199GDA	15.0	31.1	20	35	1	30.1	30.1	24,000
4 FPI								
CH4E035GDA CH4E044GDA	15.0	15.0	20	20	1	7.5	7.5	6,000
CH4E071GDA CH4E087GDA	15.0	16.1	20	20	1	15.1	15.1	12,000
CH4E107GDA CH4E131GDA	15.0	23.6	20	25	1	22.6	22.6	18,000
CH4E167GDA	15.0	31.1	20	35	1	30.1	30.1	24,000

Notes:

1.	Capacity Correction for Electric and Hot Gas Defrost Evaporators										
	S.S.T. (Dew) 20°F 0°F -10°F -20°F -30°F -40°F										
	Multiply Capacity by:	1.15	1.075	1.0375	1	0.9625	0.925				

- 2. EcoNet Enabled Units are not powered by Condensing Unit so Defrost Heaters are incorporated into shown MCA/MOPD.
- * Each asterisk represents a variable character based on voltage ordered. See page 4 for nomenclature.
- ^ R407A, R448A and R449A are rated at dew point temperature. Use R407A capacity ratings for R407C and R407F.
- † Dual Speed EC motors are compliant with California Title 24 regulations.

Models were designed in anticipation of the July 2020 Department of Energy Annual Walk-in Energy Factor (AWEF) regulations for evaporators for Walk-in Coolers and Freezers in boxes less than 3,000 sq. ft. See pages 13-14 for AWEF compliance ratings.


Application Rating and Electrical Data - Hot Gas 3-Pipe Defrost Models

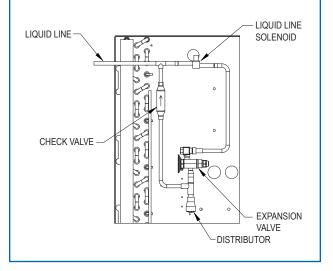
Hot Gas	BTUH (@ -20°			Total Fa	IPS			
3-Pipe Model	10°	CFM	No. of	Dual Speed EC Motors⁺		MCA		
Number (CH*H,				Fans	Motor Voltage			
CH*K)	R404A / R40				208- 230V/1	460V/1	208- 230V/1	460V/1
6 FPI								
CH6*033*DA	33,100	38,700	5,920					
CH6*044*DA	44,500	50,900	5,870	1	6.3	3.1	15.0	15.0
CH6*053*DA	53,800	62,100	5,750					
CH6*066*DA	66,400	76,600	11,850					
CH6*089*DA	89,400	102,300	11,730	2	12.6	6.2	15.0	15.0
CH6*109*DA	109,200	125,700	11,500					
CH6*134*DA	134,500	153,800	17,600	3	18.9	9.3	20.5	15.0
CH6*163*DA	163,500	188,800	17,250	3	10.3	9.5	20.5	15.0
CH6*199*DA	199,100	227,400	23,000	4	25.2	12.4	26.8	15.0
4 FPI								
CH4*035*DA	35,800	41,100	5,870	1	6.3	3.1	15.0	15.0
CH4*044*DA	44,000	50,800	5,750	'	0.3	3.1	15.0	15.0
CH4*071*DA	71,400	83,000	11,730	2	12.6	6.2	15.0	15.0
CH4*087*DA	87,400	100,900	11,500		12.0	0.2	15.0	15.0
CH4*107*DA	107,700	122,900	17,600	3	18.9	9.3	20.5	15.0
CH4*131*DA	131,900	152,300	17,250	<u> </u>	10.3	9.3	20.5	15.0
CH4*167*DA	167,000	190,200	23,000	4	25.2	12.4	26.8	15.0

Hot Gas 3-Pipe Model	MC)PD	Pan F	Drain leater ips	Heater
Number (CH*H, CH*K)	208- 230V/1	460V/1	208- 230V/1	460V/1	Watts
6 FPI					
CH6*033*DA CH6*044*DA CH6*053*DA	20	20	8.3	4.3	2,000
CH6*066*DA CH6*089*DA CH6*109*DA	20	20	16.7	8.7	4,000
CH6*134*DA CH6*163*DA	25	20	25.0	13.0	6,000
CH6*199*DA	30	20	33.3	17.4	8, 000
4 FPI					
CH4*035*DA CH4*044*DA	20	20	8.3	4.3	2,000
CH4*071*DA CH4*087*DA	20	20	16.7	8.7	4,000
CH4*107*DA CH4*131*DA	25	20	25.0	13.0	6,000
CH4*167*DA	30	20	33.3	17.4	8,000

Hot Gas 3-Pipe Model

The system uses 3 pipes — 1 for liquid line, 1 for suction line and 1 for hot gas. The hot gas is taken from the discharge line, between the compressor and the condenser, through a hot-gas solenoid valve to the distributor tee then through the coil.

- * Each asterisk represents a variable character based on voltage and defrost ordered. See page 4 for nomenclature.
- See capacity correction table and additional notes on page 7.


Application Rating and Electrical Data - Hot Gas Reverse Cycle Defrost Models

Hot Gas Reverse Cycle Model	BTUH (@ -20° 10°l	CFM	No. of	Total Fan Motor AMPS Dual Speed EC Motors [†]		MCA			
Number (CH*G,				Fans	Motor \	Motor Voltage			
CH*L)					208- 230V/1	460V/1	208-230V/1	460V/1	
6 FPI									
CH6*033*DA CH6*044*DA CH6*053*DA	33,100 44,500 53,800	38,700 50,900 62,100	5,920 5,870 5,750	1	6.3	3.1	15.0	15.0	
CH6*066*DA CH6*089*DA CH6*109*DA	66,400 89,400 109,200	76,600 102,300 125,700	11,850 11,730 11,500	2	12.6	6.2	15.0	15.0	
CH6*134*DA CH6*163*DA	134,500 163,500	153,800 188,800	17,600 17,250	3	18.9	9.3	20.5	15.0	
CH6*199*DA	199,100	227,400	23,000	4	25.2	12.4	26.8	15.0	
4 FPI									
CH4*035*DA CH4*044*DA	35,800 44,000	41,100 50,800	5,870 5,750	1	6.3	3.1	15.0	15.0	
CH4*071*DA CH4*087*DA	71,400 87,400	83,000 100,900	11,730 11,500	2	12.6	6.2	15.0	15.0	
CH4*107*DA CH4*131*DA	107,700 131,900	122,900 152,300	17,600 17,250	3	18.9	9.3	20.5	15.0	
CH4*167*DA	167,000	190,200	23,000	4	25.2	12.4	26.8	15.0	

Hot Gas Reverse Cycle Model	MC)PD	Pan F	Drain leater ips	Heater
Number (CH*G, CH*L)	208- 230V/1	460V/1	208- 230V/1	460V/1	Watts
6 FPI					
CH6*033*DA CH6*044*DA CH6*053*DA	20	20	8.3	4.3	2,000
CH6*066*DA CH6*089*DA CH6*109*DA	20	20	16.7	8.7	4,000
CH6*134*DA CH6*163*DA	25	20	25.0	13.0	6,000
CH6*199*DA	30	20	33.3	17.4	8,000
4 FPI					
CH4*035*DA CH4*044*DA	20	20	8.3	4.3	2,000
CH4*071*DA CH4*087*DA	20	20	16.7	8.7	4,000
CH4*107*DA CH4*131*DA	25	20	25.0	13.0	6,000
CH4*167*DA	30	20	33.3	17.4	8,000

Hot Gas Reverse Cycle 2-Pipe Model

A changeover valve is located in the discharge suction line of the compressor, so that when defrost is required, the valve changes over from the normal refrigeration flow so that the discharged gas flows into the suction connection and bypassesTX valve.

- Each asterisk represents a variable character based on voltage and defrost ordered. See page 4 for nomenclature.
- See capacity correction table and additional notes on page 7.

Distributor Nozzle and Expansion Valves - Air Defrost Models

				Part Nui	mbers			No.
	Model	Nozzle @ I	Liq. Temp.	TXV^ @ L	iq. Temp.	EEV @ Li	q. Temp.	of
	Number	50°F	100°F	50°F	100°F	50°F	100°F	Circuits
	R404A							
	CH6A031*DA	G-1-1/2	G-4	SBFSE-B-C	SBFSE-C-C	SER-C	SER-C	6
	CH6A043*DA	G-1-1/2	G-5	SBFSE-C-C	OSE-6-C	SER-C	SER-C	6
	CH6A052*DA	E-2	E-6	SBFSE-C-C	OSE-6-C	SER-C	SER-D	12
	CH6A063*DA	E-2-1/2	E-10	OSE-6-C	OSE-6-C	SER-C	SER-D	9
6	CH6A087*DA	C-3	C-12	OSE-6-C	OSE-9-C	SER-D	SER-D	18
FPI	CH6A105*DA	C-4	C-15	OSE-9-C	OSE-9-C	SER-D	SERI-F	18
	CH6A132*DA	C-5	C-20	OSE-9-C	OSE-12-C	SER-D	SERI-F	18
	CH6A156*DA	C-6	C-25	OSE-9-C	OSE-12-C	SERI-F	SERI-G	24
	CH6A175*DA	A-8	A-25	OSE-12-C	OSE-21-C	SERI-F	SERI-G	27
	CH6A209*DA	A-10	A-30	OSE-12-C	OSE-21-C	SERI-F	SERI-G	36
	R407A/ R448A	/ R449A †						
	CH6A031*DA	G-1-1/2	G-4	SBFDE-B-C	SBFDE-C-C	SER-B	SER-C	6
	CH6A043*DA	G-1-1/2	G-5	SBFDE-C-C	SBFDE-C-C	SER-C	SER-C	6
	CH6A052*DA	E-2	E-6	SBFDE-C-C	EBSDE-7-C	SER-C	SER-C	12
	CH6A063*DA	E-2-1/2	E-8	SBFDE-C-C	EBSDE-7-C	SER-C	SER-D	9
6	CH6A087*DA	C-4	C-12	EBSDE-7-C	EBSDE-10-C	SER-D	SER-D	18
FPI	CH6A105*DA	C-4	C-15	EBSDE-7-C	ODE-12-C	SER-D	SERI-F	18
	CH6A132*DA	C-5	C-17	EBSDE-10-C	ODE-12-C	SER-D	SERI-F	18
	CH6A156*DA	C-6	C-20	EBSDE-12-C	ODE-17-C	SERI-F	SERI-F	24
	CH6A175*DA	A-8	A-25	EBSDE-12-C	ODE-17-C	SERI-F	SERI-G	27
	CH6A209*DA	A-10	A-30	EBSDE-17-C	ODE-28-C	SERI-F	SERI-G	36

Note: The distributor lines are 1/4" tube & 31" long.

- * Each asterisk represents a variable character based on voltage ordered. See page 4 for nomenclature.
- ^ TXV selections are based on +25°F suction temp., 8°F to 12°F evaporatorTD. Contact factory for operating conditions outside of this range.
- † SBFDE , ODE, and EBSDE expansion valves are compatible with R407A, R448A and R449A/B. For other valves, follow manufacturers selection guidelines.

Base models (no factory-mounted components) include nozzles sized for 100°F liquid shipped loose.

Distributor Nozzle and Expansion Valves - Electric Defrost Models

		Part Numbers										
	Model	Nozzle @	Liq. Temp.	TXV^ @	Liq. Temp.	EEV @ Liq. Temp.		No. of				
Number		50°F	100°F	50°F	100°F	50°F	100°F	Circuits				
	R404A											
	CH6E033*DA	E-3	E-8	SBFSE-C-Z	EBSSE-6-Z	SER-C	SER-C	9				
	CH6E044*DA	E-4	E-10	OSE-6-Z	EBSSE-7-1/2-Z	SER-C	SER-C	9				
	CH6E053*DA	E-5	E-12	OSE-6-Z	EBSSE-10-Z	SER-C	SER-D	12				
	CH6E066*DA	C-6	C-17	OSE-6-Z	EBSSE-10-Z	SER-C	SER-D	18				
6 FPI	CH6E089*DA	C-10	C-20	OSE-9-Z	EBSSE-13-Z	SER-D	SER-D	18				
161	CH6E109*DA	C-12	C-25	OSE-12-Z	OSE-21-Z	SER-D	SERI-F	24				
	CH6E134*DA	A-15	A-35	OSE-12-Z	OSE-30-Z	SER-D	SERI-F	27				
	CH6E163*DA	A-17	A-40	OSE-21-Z	OSE-30-Z	SERI-F	SERI-G	36				
	CH6E199*DA	A-20	A-50	OSE-35-Z	OSE-45-Z	SERI-F	SERI-G	36				
	CH4E035*DA	E-3	E-8	SBFSE-C-Z	OSE-6-Z	SER-C	SER-C	9				
	CH4E044*DA	E-4	E-12	OSE-6-Z	OSE-6-Z	SER-C	SER-C	12				
	CH4E071*DA	C-8	C-17	OSE-6-Z	OSE-12-Z	SER-C	SER-D	18				
4 FPI	CH4E087*DA	C-10	C-20	OSE-9-Z	OSE-12-Z	SER-D	SER-D	24				
FFI	CH4E107*DA	A-12	A-30	OSE-12-Z	OSE-21-Z	SER-D	SERI-F	27				
	CH4E131*DA	A-15	A-35	OSE-12-Z	OSE-30-Z	SER-D	SERI-F	36				
	CH4E167*DA	A-20	A-40	OSE-21-Z	OSE-30-Z	SERI-F	SERI-G	36				
	R407A/ R448A	/ R449A †										
	CH6E033*DA	E-2-1/2	E-6	SBFDE-C-Z	ODE-7-Z	SER-B	SER-C	9				
	CH6E044*DA	E-4	E-8	EBSDE-7-Z	ODE-12-Z	SER-C	SER-C	9				
	CH6E053*DA	E-5	E-12	EBSDE-7-Z	ODE-12-Z	SER-C	SER-C	12				
	CH6E066*DA	C-6	C-15	EBSDE-10-Z	ODE-12-Z	SER-C	SER-D	18				
6 FPI	CH6E089*DA	C-8	C-17	ODE-12-Z	ODE-17-Z	SER-D	SER-D	18				
161	CH6E109*DA	C-12	C-25	ODE-17-Z	ODE-28-Z	SER-D	SER-D	24				
	CH6E134*DA	A-15	A-30	ODE-17-Z	ODE-28-Z	SER-D	SERI-F	27				
	CH6E163*DA	A-17	A-35	ODE-28-Z	ODE-40-Z	SERI-F	SERI-G	36				
	CH6E199*DA	A-20	A-40	ODE-28-Z	ODE-45-Z	SERI-F	SERI-G	36				
	CH4E035*DA	E-3	E-6	SBFDE-C-Z	ODE-7-Z	SER-C	SER-C	9				
	CH4E044*DA	E-4	E-8	SBFDE-C-Z	ODE-7-Z	SER-C	SER-C	12				
	CH4E071*DA	C-6	C-15	ODE-12-Z	ODE-12-Z	SER-C	SER-D	18				
4 FPI	CH4E087*DA	C-8	C-17	ODE-12-Z	ODE-17-Z	SER-D	SER-D	24				
	CH4E107*DA	A-12	A-20	ODE-17-Z	ODE-28-Z	SER-D	SER-D	27				
	CH4E131*DA	A-15	A-30	ODE-17-Z	ODE-28-Z	SER-D	SERI-F	36				
	CH4E167*DA	A-17	A-35	ODE-28-Z	ODE-40-Z	SERI-F	SERI-G	36				

Note: The distributor lines are 1/4" tube & 31" long.

- * Each asterisk represents a variable character based on voltage ordered. See page 4 for nomenclature.
- ^ TXV selections for Electric Defrost Models are based on -20°F suction temp., 8°F to 12°F evaporatorTD. Contact factory for operating conditions outside of this range. Do not use pressure limiting TXVs when the condensing unit includes a CPR valve.

Base models (no factory-mounted components) include nozzles sized for 100°F liquid shipped loose.

[†] SBFDE, ODE, and EBSDE expansion valves are compatible with R407A, R448A and R449A/B. For other valves, follow manufacturers selection guidelines.

Distributor Nozzle and Expansion Valves - Hot Gas Defrost Models

	Model Part Numbers											
	Number	Nozzle @	Liq. Temp.		Liq. Temp.	EEV @ L	No.					
	CH*H/CH*G/ CH*K/CH*L	50°F	100°F	50°F	100°F	50°F	100°F	of Circuits				
	R404A											
	CH6*033*DA	E-3	E-8	SBFSE-C-Z	EBSSE-6-Z	SER-C	SER-C	9				
	CH6*044*DA	E-4	E-10	OSE-6-Z	EBSSE-7-1/2-Z	SER-C	SER-C	9				
	CH6*053*DA	E-5	E-12	OSE-6-Z	EBSSE-10-Z	SER-C	SER-D	12				
	CH6*066*DA	C-6	C-17	OSE-6-Z	EBSSE-10-Z	SER-C	SER-D	18				
6 FPI	CH6*089*DA	C-10	C-20	OSE-9-Z	EBSSE-13-Z	SER-D	SER-D	18				
	CH6*109*DA	C-12	C-25	OSE-12-Z	OSE-21-Z	SER-D	SERI-F	24				
	CH6*134*DA	A-15	A-35	OSE-12-Z	OSE-30-Z	SER-D	SERI-F	27				
	CH6*163*DA	A-17	A-40	OSE-21-Z	OSE-30-Z	SERI-F	SERI-G	36				
	CH6*199*DA	A-20	A-50	OSE-35-Z	OSE-45-Z	SERI-F	SERI-G	36				
	CH4*035*DA	E-3	E-8	SBFSE-C-Z	OSE-6-Z	SER-C	SER-C	9				
	CH4*044*DA	E-4	E-12	OSE-6-Z	OSE-6-Z	SER-C	SER-C	12				
4	CH4*071*DA	C-8	C-17	OSE-6-Z	OSE-12-Z	SER-C	SER-D	18				
4 FPI	CH4*087*DA	C-10	C-20	OSE-9-Z	OSE-12-Z	SER-D	SER-D	24				
	CH4*107*DA	A-12	A-30	OSE-12-Z	OSE-21-Z	SER-D	SERI-F	27				
	CH4*131*DA	A-15	A-35	OSE-12-Z	OSE-30-Z	SER-D	SERI-F	36				
	CH4*167*DA	A-20	A-40	OSE-21-Z	OSE-30-Z	SERI-F	SERI-G	36				
	R407A/ R448A	/ R449A †										
	CH6*033*DA	E-2-1/2	E-6	SBFDE-C-Z	ODE-7-Z	SER-B	SER-C	9				
	CH6*044*DA	E-4	E-8	EBSDE-7-Z	ODE-12-Z	SER-C	SER-C	9				
	CH6*053*DA	E-5	E-12	EBSDE-7-Z	ODE-12-Z	SER-C	SER-C	12				
	CH6*066*DA	C-6	C-15	EBSDE-10-Z	ODE-12-Z	SER-C	SER-D	18				
6 FPI	CH6*089*DA	C-8	C-17	ODE-12-Z	ODE-17-Z	SER-D	SER-D	18				
	CH6*109*DA	C-12	C-25	ODE-17-Z	ODE-28-Z	SER-D	SER-D	24				
	CH6*134*DA	A-15	A-30	ODE-17-Z	ODE-28-Z	SER-D	SERI-F	27				
	CH6*163*DA	A-17	A-35	ODE-28-z	ODE-40-Z	SERI-F	SERI-G	36				
	CH6*199*DA	A-20	A-40	ODE-28-Z	ODE-45-Z	SERI-F	SERI-G	36				
	CH4*035*DA	E-3	E-6	SBFDE-C-Z	ODE-7-Z	SER-C	SER-C	9				
	CH4*044*DA	E-4	E-8	SBFDE-C-Z	ODE-7-Z	SER-C	SER-C	12				
4	CH4*071*DA	C-6	C-15	ODE-12-Z	ODE-12-z	SER-C	SER-D	18				
4 FPI	CH4*087*DA	C-8	C-17	ODE-12-Z	ODE-17-Z	SER-D	SER-D	24				
	CH4*107*DA	A-12	A-20	ODE-17-Z	ODE-28-Z	SER-D	SER-D	27				
	CH4*131*DA	A-15	A-30	ODE-17-Z	ODE-28-Z	SER-D	SERI-F	36				
	CH4*167*DA	A-17	A-35	ODE-28-Z	ODE-40-Z	SERI-F	SERI-G	36				

Note: The distributor lines are 1/4" tube & 21" long.

Base models (no factory-mounted components) include nozzles sized for 100°F liquid shipped loose.

^{*} Each asterisk represents a variable character based on defrost and voltage ordered. See page 4 for nomenclature.

[^] TXV selections for Hot Gas Defrost Models are based on -20°F suction temp., 8°F to 12°F evaporatorTD. Contact factory for operating conditions outside of this range. Do not use pressure limiting TXVs when the condensing unit includes a CPR valve.

[†] SBFDE , ODE, and EBSDE expansion valves are compatible with R407A, R448A and R449A/B. For other valves, follow manufacturers selection guidelines.

Specifications - Air Defrost Models

Models	Fan Dia.	Motor Data			Refrigerant Connections		No. of Hanger Slot	Figure	Unit Dimensions (Inches)			Est. Unit Wt.
	(Inches)	Motor Qty.	НР	RPM	Liquid Line^	Suction Line	Locations		L	W	Н	(Lbs.)
6 FPI												
CH6A031*DA	30	1	3/4	850	1/2	1-1/8	4	1	59-7/8	27-3/8	49-1/4	293
CH6A043*DA	30	1	3/4	850	1/2	1-3/8	4	1	59-7/8	27-3/8	49-1/4	293
CH6A052*DA	30	1	3/4	850	5/8	1-5/8	4	1	59-7/8	27-3/8	49-1/4	293
CH6A063*DA	30	2	3/4	850	5/8	1-5/8	6	2	99-7/8	27-3/8	49-1/4	489
CH6A087*DA	30	2	3/4	850	7/8	2-1/8	6	2	99-7/8	27-3/8	49-1/4	489
CH6A105*DA	30	2	3/4	850	7/8	2-1/8	6	2	99-7/8	27-3/8	49-1/4	489
CH6A132*DA	30	3	3/4	850	7/8	2-1/8	8	3	139-7/8	27-3/8	49-1/4	652
CH6A156*DA	30	3	3/4	850	1-1/8	2-1/8	8	3	139-7/8	27-3/8	49-1/4	652
CH6A175*DA	30	4	3/4	850	1-1/8	2-1/8	10	4	179-7/8	27-3/8	49-1/4	837
CH6A209*DA	30	4	3/4	850	1-1/8	2-1/8	10	4	179-7/8	27-3/8	49-1/4	837

- * Each asterisk represents a variable character based on voltage ordered. See page 4 for nomenclature.
- ^ For units with mounted TXV components. See Nozzle/TXV table for distributor connection size when TXV is field installed.
- 1. For dimensional distance between hanger slots, consult model's corresponding dimension drawing. Hanger slots are 1/2" deep x 1" wide.
- 2. Drain is 1-1/4" NPT for all models.
- ⁺ If the model has a numerical value in the AWEF table below, the following statement applies: "The refrigeration system is designed and certified for use in walk-in cooler applications less than 3,000 sq. ft."

Shipping Information - All Models								
No. of Fans	Dir	hippin nensio	ons	Est. Ship Wt.				
I alls	L	W	Н	(Lbs.)				
1	69	42	66	470				
2	109	42	730					
3	146	42	1000					
4	189	42	66	1,130				

Department of Energy Annua	l Walk-In Energy	Factor (AWEF) Ratings						
Base Model Number	FPI	AWEF						
Cooler Models+- Air Defrost								
C*6A031*DA	6	9.0						
C*6A043*DA	6	9.0						
C*6A052*DA	6	9.0						
C*6A063*DA	6	9.0						
C*6A087*DA	6	9.0						
C*6A105*DA	6	9.0						
C*6A132*DA	6	9.0						
C*6A156*DA	6	9.0						
C*6A175*DA	6	9.0						
C*6A209*DA	6	9.0						

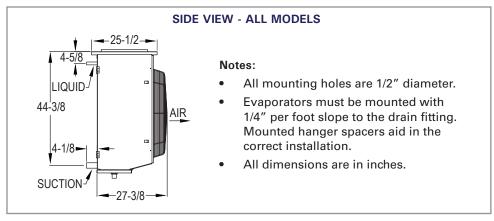
TYPICAL APPLICATIONS:

Medium to Large Warehouses

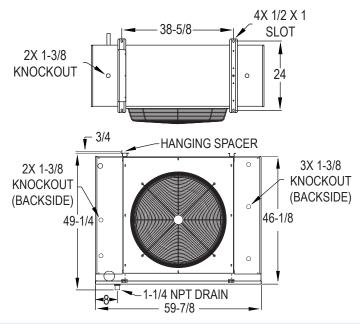
Cold Storage Warehouses

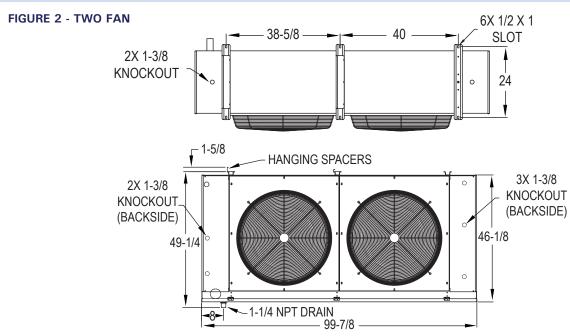
Walk-in Coolers and Freezers

Specifications - Electric and Hot Gas Defrost Models

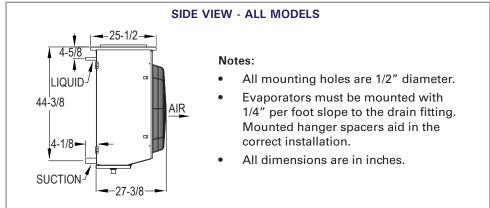

Model Number	Fan	Motor Data			Refrigerant Connections				Unit Dimensions			Est. Unit	
CH*E/H/ G/K/L	Dia. (Inches)	Motor Qty.	НР	RPM	Liquid Line^	Suction Line	3-Pipe Hot Gas Line	Hanger Slot Locations	Figure	L	(Inches) W	Н	Wt. (Lbs.)
6 FPI													
CH6*033*DA	30	1	3/4	850	1/2	2-1/8	1-1/8	4	1	59-7/8	27-3/8	49-1/4	293
CH6*044*DA	30	1	3/4	850	5/8	2-1/8	1-1/8	4	1	59-7/8	27-3/8	49-1/4	293
CH6*053*DA	30	1	3/4	850	5/8	2-1/8	1-1/8	4	1	59-7/8	27-3/8	49-1/4	293
CH6*066*DA	30	2	3/4	850	5/8	2-1/8	1-1/8	6	2	99-7/8	27-3/8	49-1/4	489
CH6*089*DA	30	2	3/4	850	7/8	3-1/8	1-1/8	6	2	99-7/8	27-3/8	49-1/4	489
CH6*109*DA	30	2	3/4	850	7/8	3-1/8	1-1/8	6	2	99-7/8	27-3/8	49-1/4	489
CH6*134*DA	30	3	3/4	850	1-1/8	3-1/8	1-3/8	8	3	139-7/8	27-3/8	49-1/4	652
CH6*163*DA	30	3	3/4	850	1-1/8	3-1/8	1-3/8	8	3	139-7/8	27-3/8	49-1/4	652
CH6*199*DA	30	4	3/4	850	1-1/8	3-1/8	1-3/8	10	4	179-7/8	27-3/8	49-1/4	837
4 FPI													
CH4*035*DA	30	1	3/4	850	1/2	2-1/8	1-1/8	4	1	59-7/8	27-3/8	49-1/4	293
CH4*044*DA	30	1	3/4	850	5/8	2-1/8	1-1/8	4	1	59-7/8	27-3/8	49-1/4	293
CH4*071*DA	30	2	3/4	850	5/8	2-1/8	1-1/8	6	2	99-7/8	27-3/8	49-1/4	489
CH4*087*DA	30	2	3/4	850	7/8	3-1/8	1-1/8	6	2	99-7/8	27-3/8	49-1/4	489
CH4*107*DA	30	3	3/4	850	7/8	3-1/8	1-3/8	8	3	139-7/8	27-3/8	49-1/4	652
CH4*131*DA	30	3	3/4	850	1-1/8	3-1/8	1-3/8	8	3	139-7/8	27-3/8	49-1/4	652
CH4*167*DA	30	4	3/4	850	1-1/8	3-1/8	1-3/8	10	4	179-7/8	27-3/8	49-1/4	837

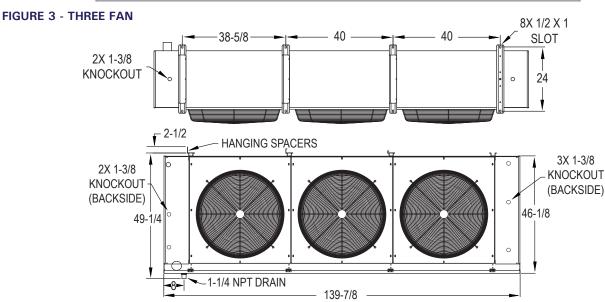
Department of Energy Annual Walk-In Energy Factor (AWEF) Ratings								
Base Model Number	FPI	AWEF						
Cooler Models* Electric and Hot Gas Defrost								
C*6*033*DA	6	9.0						
C*6*044*DA	6	9.0						
C*6*053*DA	6	9.0						
C*6*066*DA	6	9.0						
C*6*089*DA	6	9.0						
C*6*109*DA	6	9.0						
C*6*134*DA	6	9.0						
C*6*163*DA	6	9.0						
C*6*199*DA	6	9.0						

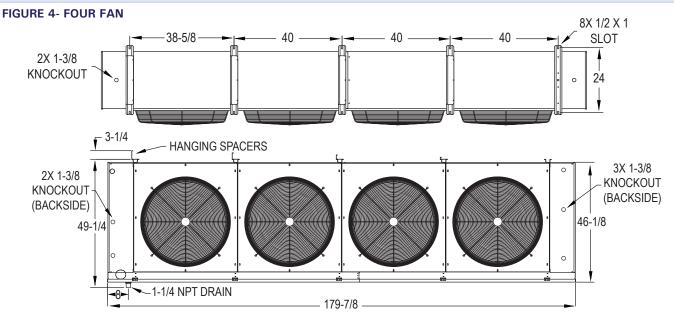

Department of Energy Annual Walk-In Energy Factor (AWEF) Ratings							
Base Model Number	FPI	AWEF					
Freezer Models++ - Elec	tric and Hot	Gas Defrost					
C*6*033*DA	6	4.15					
C*6*044*DA	6	4.15					
C*6*053*DA	6	4.15					
C*6*066*DA	6	4.15					
C*6*089*DA	6	4.15					
C*6*109*DA	6	4.15					
C*6*134*DA	6	4.15					
C*6*163*DA	6	4.15					
C*6*199*DA	6	4.15					
C*4*035*DA	4	4.15					
C*4*044*DA	4	4.15					
C*4*071*DA	4	4.15					
C*4*087*DA	4	4.15					
C*4*107*DA	4	4.15					
C*4*131*DA	4	4.15					
C*4*167*DA	4	4.15					


- * Each asterisk represents a variable character based on style, defrost and voltage ordered. See page 4 for nomenclature.
- ^ For units with mountedTXV components. See Nozzle/TXV table for distributor connection size whenTXV is field installed.
- 1. For dimensional distance between hanger slots, consult model's corresponding dimension drawing. Hanger slots are 1/2" deep x 1" wide
- 2. Drain is 1-1/4" NPT for all models.
- 3. For shipping dimensions and weights, see Shipping Information table on page 13.
- † If the model has a numerical value in the table above, the following statement applies: "The refrigeration system is designed and certified for use in walk-in cooler applications less than 3,000 sq. ft."
- ⁺⁺ If the model has a numerical value in the table above, the following statement applies: "The refrigeration system is designed and certified for use in walk-in freezer applications less than 3,000 sq. ft."

Physical Dimensions




FIGURE 1 - SINGLE FAN



Physical Dimensions

Due to continuing product development, specifications are subject to change without notice.

